翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

abstract elementary class : ウィキペディア英語版
abstract elementary class
In model theory, a discipline within mathematical logic, an abstract elementary class, or AEC for short, is a class of models with a partial order similar to the relation of an elementary substructure of an elementary class in first-order model theory. They were introduced by Saharon Shelah.〔.〕
== Definition ==
\langle K, \prec_K\rangle, for K a class of structures in some language L = L(K), is an AEC if it has the following properties:
* \prec_K is a partial order on K.
* If M\prec_K N then M is a substructure of N.
* Isomorphisms: K is closed under isomorphisms, and if M,N,M',N'\in K, f\colon M\simeq M', g\colon N\simeq N', f\subseteq g, and M\prec_K N, then M'\prec_K N'.
* Coherence: If M_1\prec_K M_3, M_2\prec_K M_3, and M_1\subseteq M_2, then M_1\prec_K M_2.
* Tarski–Vaught chain axioms: If \gamma is an ordinal and \\subseteq K is a chain (i.e. \alpha<\beta<\gamma\implies M_\alpha\prec_K M_\beta), then:
*
* \bigcup_ M_\alpha\in K
*
* If M_\alpha\prec_K N, for all \alpha<\gamma, then \bigcup_ M_\alpha\prec_K N
* Löwenheim–Skolem axiom: There exists a cardinal \mu \ge |L(K)| + \aleph_0, such that if A is a subset of the universe of M, then there is N in K whose universe contains A such that \|N\|\leq |A|+\mu and N\prec_K M. We let \operatorname(K) denote the least such \mu and call it the Löwenheim–Skolem number of K.
Note that we usually do not care about the models of size less than the Löwenheim–Skolem number and often assume that there are none (we will adopt this convention in this article). This is justified since we can always remove all such models from an AEC without influencing its structure above the Löwenheim–Skolem number.
A K-embedding is a map f: M \rightarrow N for M, N \in K such that f() \prec_K N and f is an isomorphism from M onto f(). If K is clear from context, we omit it.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「abstract elementary class」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.